

Oregon State
University

COLLEGE OF ENGINEERING

Phoenix: Enabling Sparse Fine-tuning for Foundation Model Downstream Tasks on Cerebras

Yale

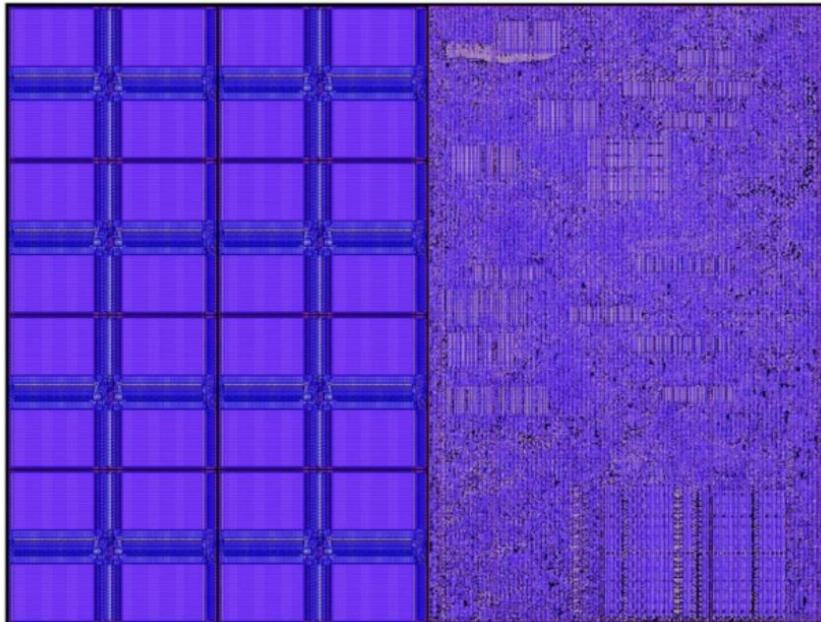
Haoyu Zheng (OSU), Linghao Song (Yale), Murali Emani (ANL)
Wenqian (Wendy) Dong (OSU, *Presenter*)

Argonne
NATIONAL LABORATORY

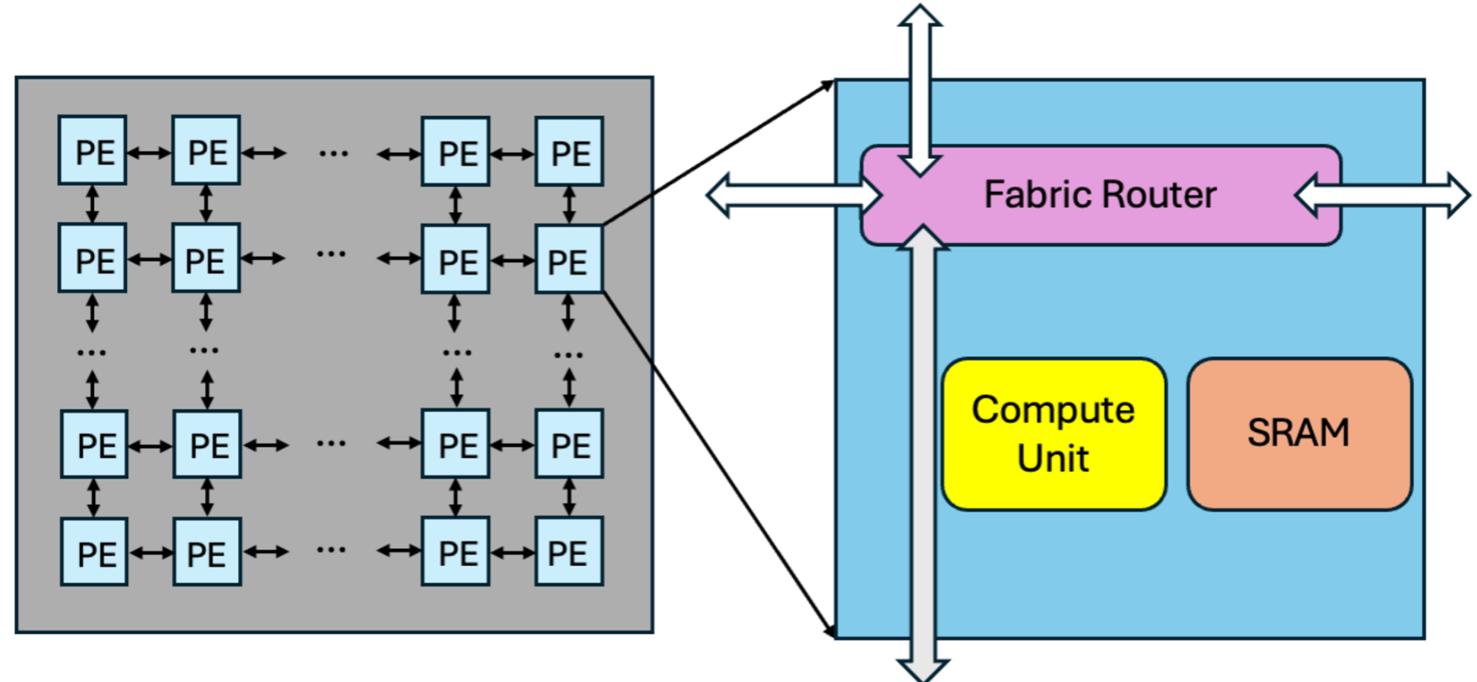
Yale

Cerebras: Wafer Scale Engine

A Wafer Scale Engine (WSE) is a type of computer chip designed to accelerate artificial intelligence and high-performance computing workloads.



The Cerebras core physical design: 50% of the area is static random-access memory (SRAM) and 50% of the area is logic.

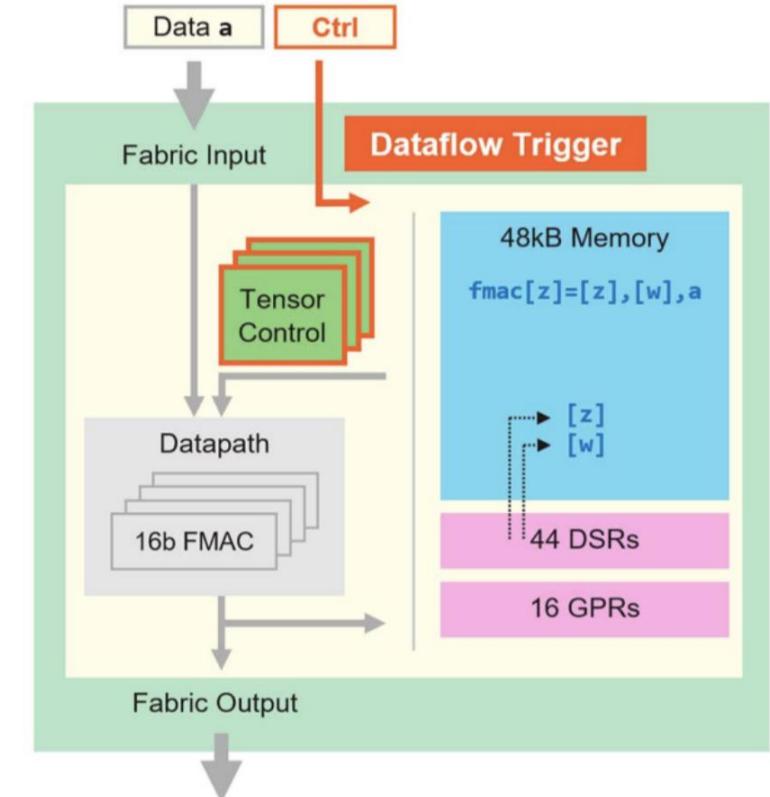


Each core includes local SRAM, compute unit, and a fabric router for direct inter-core communication within a 2D mesh network

Cerebras Architecture is Designed for Sparse Architecture

- Fine-grained dataflow cores
 - Triggers compute only for non-zero data
- High bandwidth memory
 - Enables full datapath performance
- High bandwidth interconnect
 - Enables low overhead reductions

Only architecture capable of accelerating all types of sparsity, including **dynamic and unstructured sparsity**.

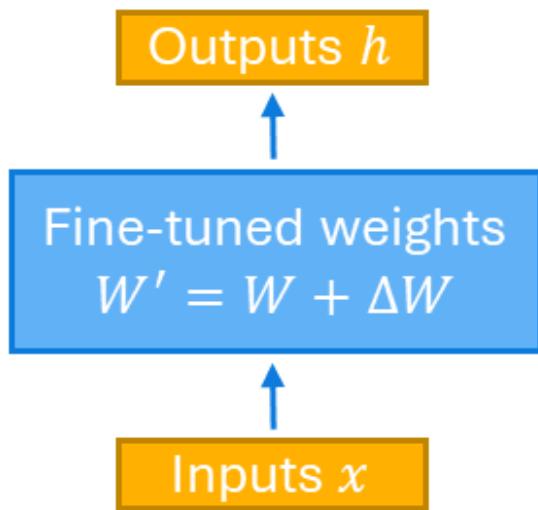


Low-Rank Adaptation (LoRA)

Oregon State University
College of Engineering

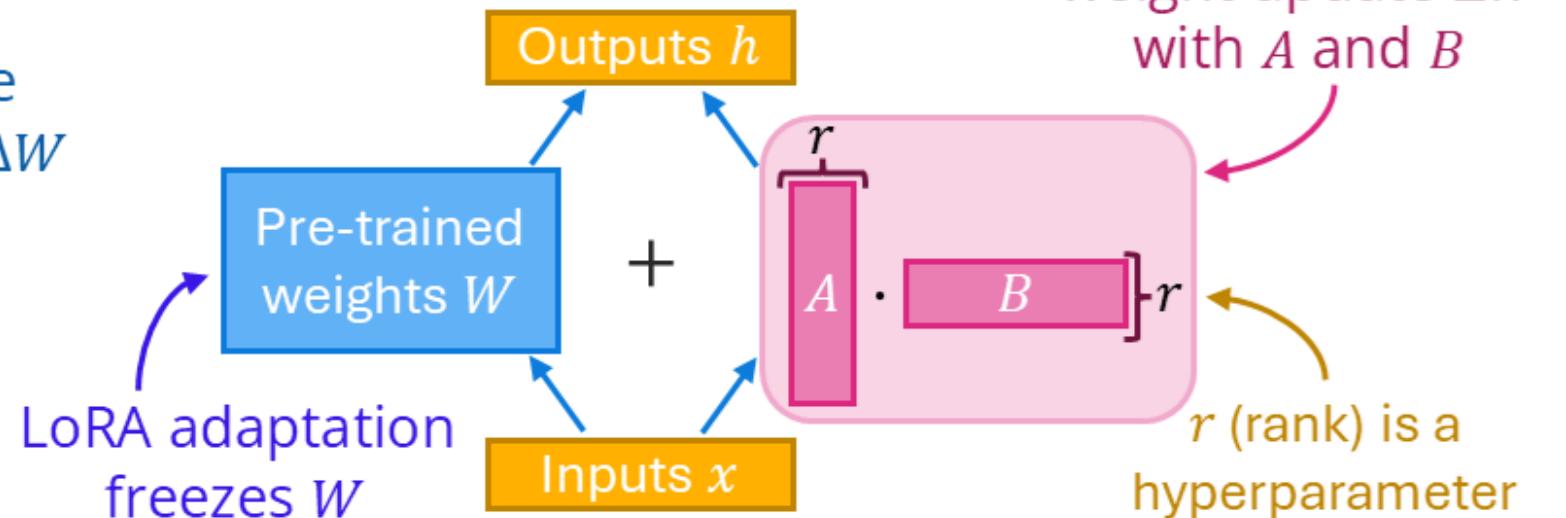
- Only retrain few parameters for Down-stream Adaptation

Full fine-tuning



During fine-tuning, all weights are updated by ΔW

LoRA adaptation



Low-Rank Adaptation (LoRA)

- Only retrain few parameters for Down-stream Adaptation

	Method	# of Trainable Params	E2E (BLEU)	DART (BLEU)	WebNLG (BLEU-U/S/A)
	GPT-2 M (Fine-Tune)	354.92M	68.2	46.0	30.4/63.2/47.6
	GPT-2 M (Adapter)	0.37M	66.3	42.4	45.1/54.5/50.2
	GPT-2 M (Prefix)	0.35M	69.7	45.7	44.1/63.1/54.4
	GPT-2 M (LoRA)	0.35M	70.4±.1	47.1±.2	46.7±.4/62.1±.2/55.3±.2
	GPT-2 L (Fine-Tune)	774.03M	68.5	46.5	41.7/64.6/54.2
	GPT-2 L (Adapter)	0.88M	69.1±.1	45.7±.1	49.8±.0/61.1±.0/56.0±.0
	GPT-2 L (Prefix)	0.77M	70.3	46.5	47.0/64.2/56.4
	GPT-2 L (LoRA)	0.77M	70.4±.1	47.5±.1	48.4±.3/64.0±.3/57.0±.1

0.22% reduction!

Phoenix Framework

An end-to-end framework that explores the benefit of unstructured sparsity on Cerebras for LLMs' finetuning and inference

Targets:

(1) Sparse Inference Efficiency:

- Enable true FLOPs reduction at inference time using unstructured sparsity.

(2) Cerebras Hardware Utilization:

- Leverage Cerebras CS-2's unique support for unstructured sparse computation.

(3) End-to-End Sparse Tuning Pipeline:

- Support sparsity from pruning to deployment with no conversion steps.

Challenges:

(1) LoRA Merge Breaks Sparsity:

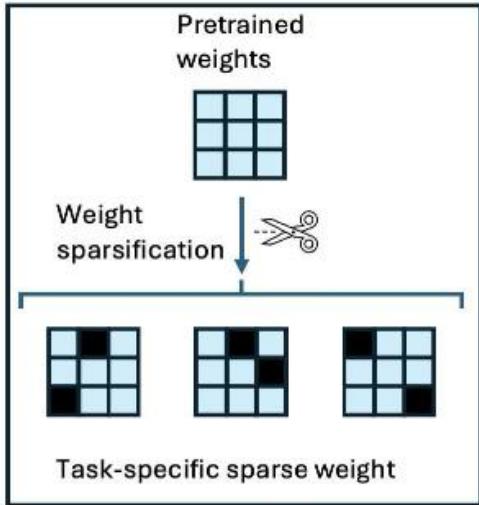
Standard LoRA adapters (dense matrices) overwrite zeroed weights when merged.

(2) Dense Fine-Tuning after Sparse Pretraining:

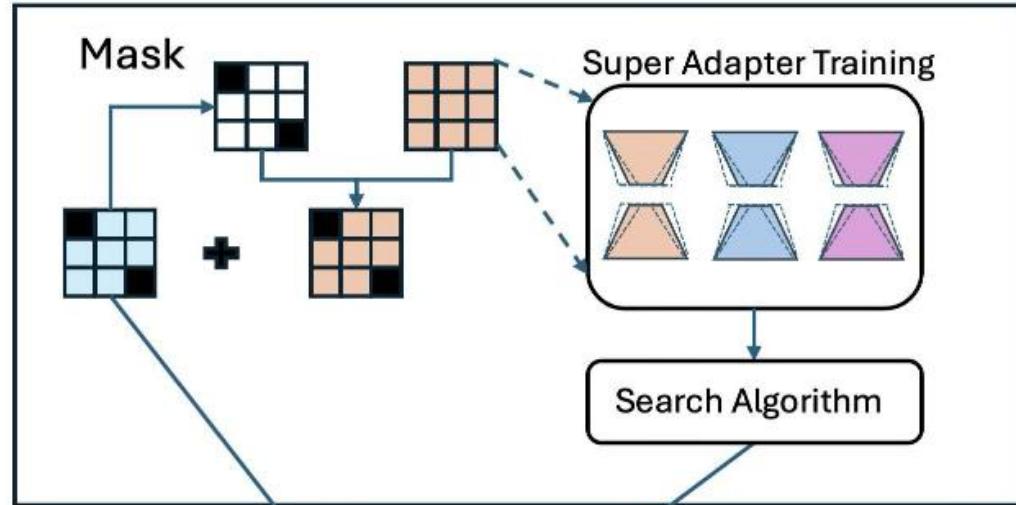
Methods like SPDF reintroduce density during downstream adaptation.

Phoenix - Enabling LLM Sparsity on Cerebras

Step 1: Adaptive Sparsity Initialization



Step 2: Sparse-aware Fine tuning

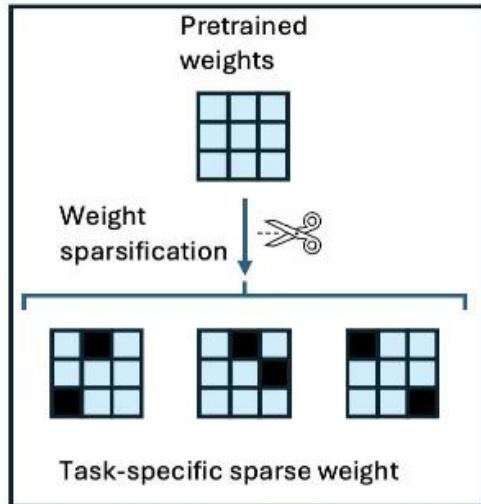


Step3: Sparsity-Preserved Merge

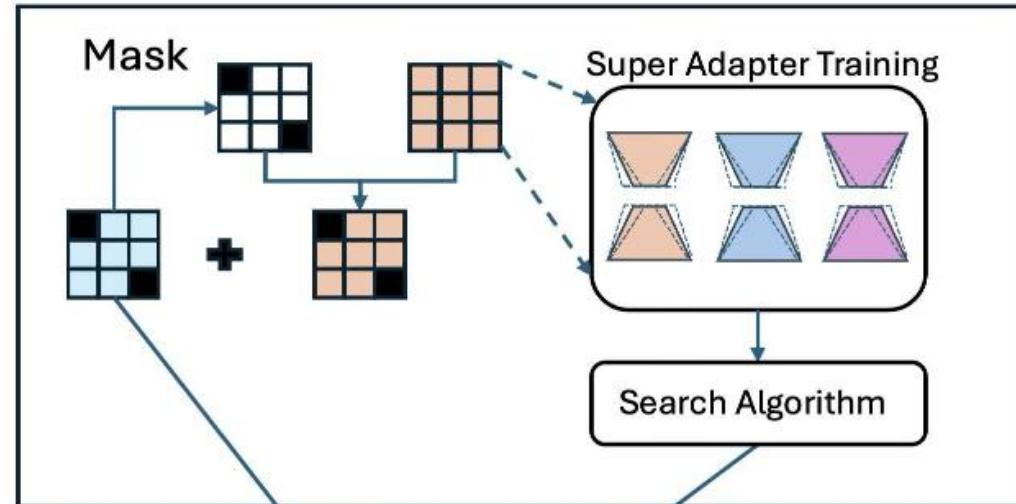
Three steps in Phoenix: (1) Adaptive Sparsity Initialization, where task-specific sparse weights are generated from a pre-trained dense model; (2) Sparsity-Aware Fine-Tuning, Phoenix applies a binary mask to get the sparse structure derived from the sparsified pre-trained model weights and uses a search algorithm to select the high performance subadapter configuration; and (3) Sparsity-Preserved Merge, where the fine-tuned adapter is integrated back into the sparse model without breaking the original sparsity pattern.

Phoenix - Enabling LLM Sparsity on Cerebras

Step 1: Adaptive Sparsity Initialization



Step 2: Sparse-aware Fine tuning



Step3: Sparsity-Preserved Merge



Evaluation

Oregon State University
College of Engineering

Models: LLaMA-3-8B and Mistral-7B-v0.3

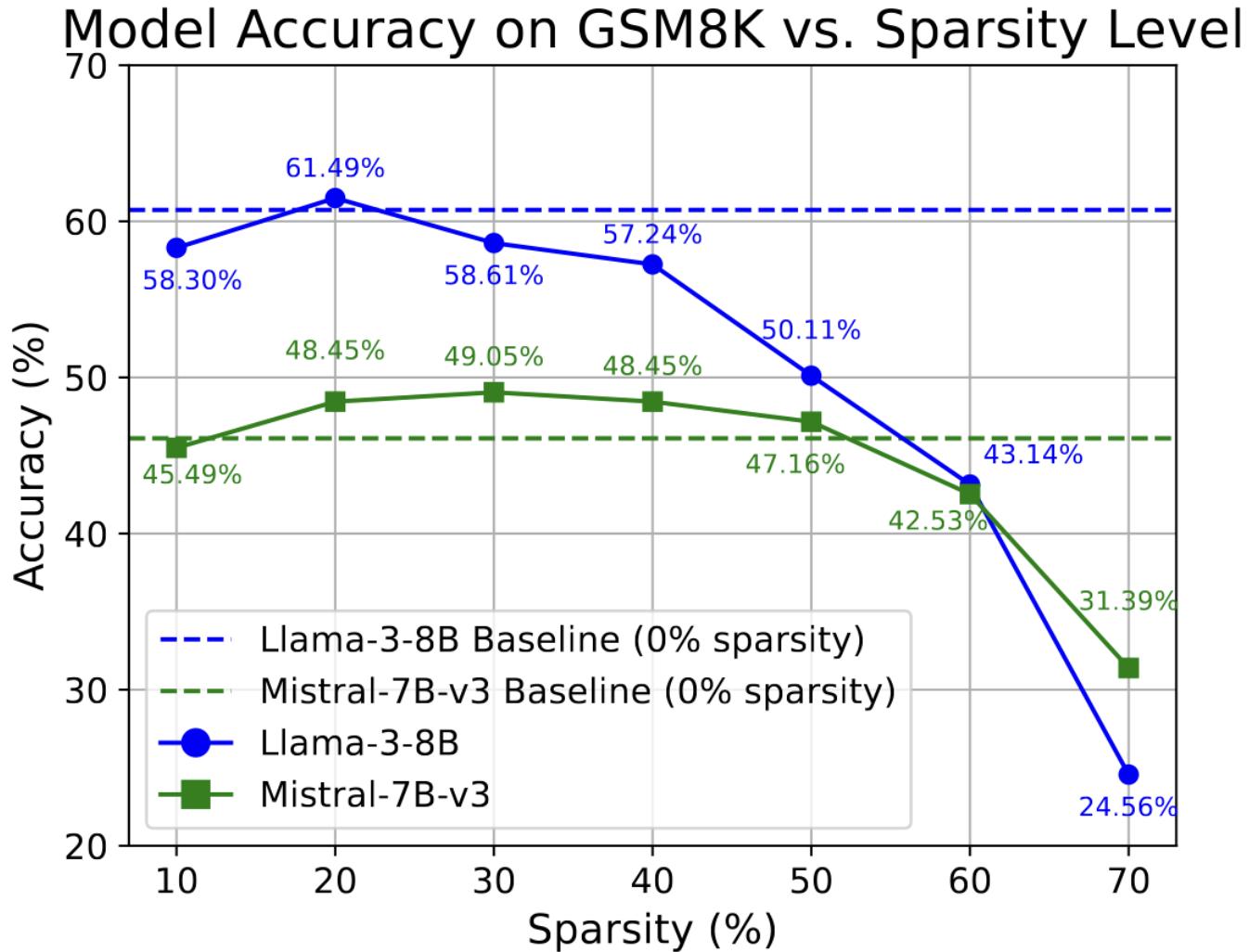
Downstream task:

(1) Grade School Math: We benchmark performance on the GSM8K dataset, a challenging arithmetic reasoning task requiring multi-step problem solving

(2) Instruction-Tuned Math Reasoning: This includes a trio of math-focused datasets — GSM8K, Math Word Problems (MAWPS), and SVAMP

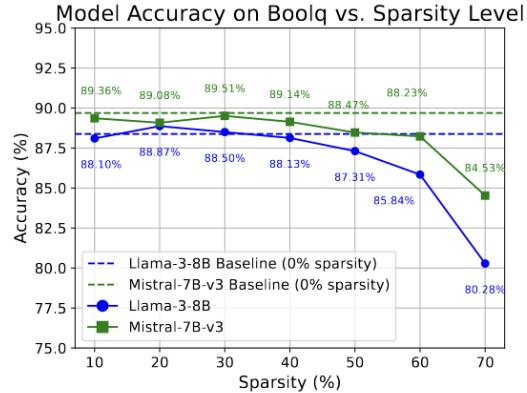
Specification	Cerebras CS-2	Nvidia A100 80GB
Chip Size	46225 mm ²	826 mm ²
Memory	40GB on-chip SRAM	80GB off-chip HBM
Memory Bandwidth	22 PB/s	2 TB/s
Compute Capacity	850000 cores	6912 CUDA cores
Process	7nm (TSMC)	7nm (TSMC)

Performance – Accuracy (1)

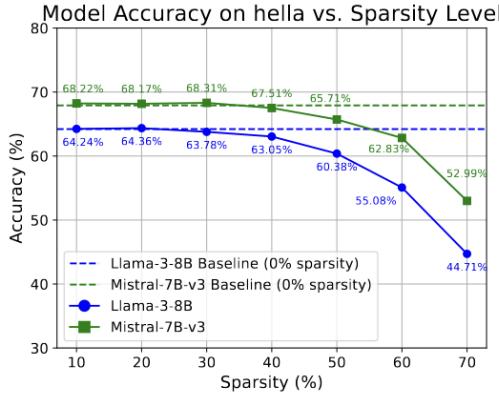


Performance – Accuracy (2)

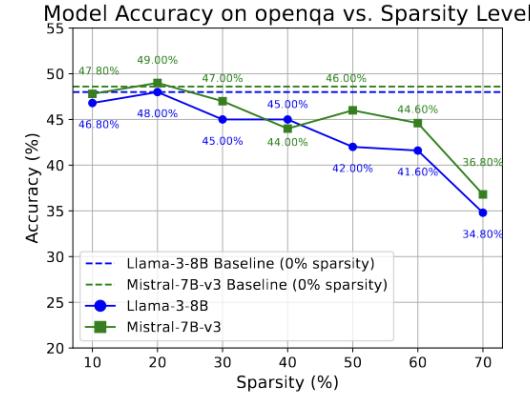
Oregon State University
College of Engineering



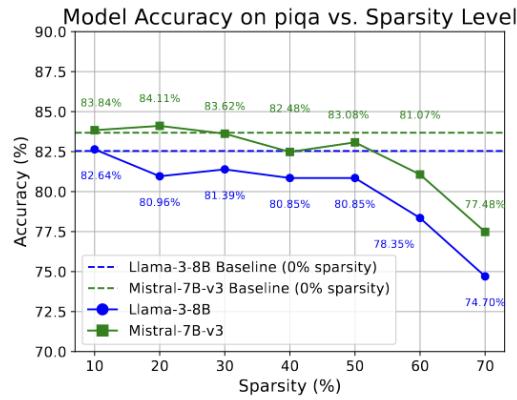
(a) BoolQ



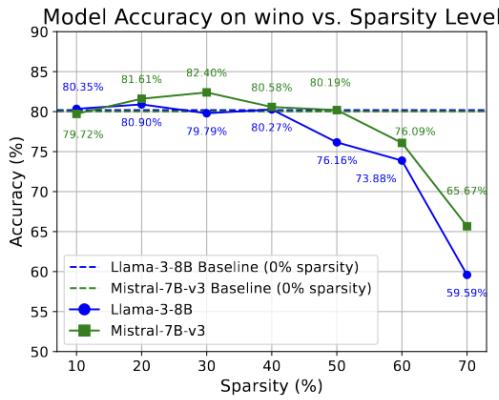
(b) HellaSwag



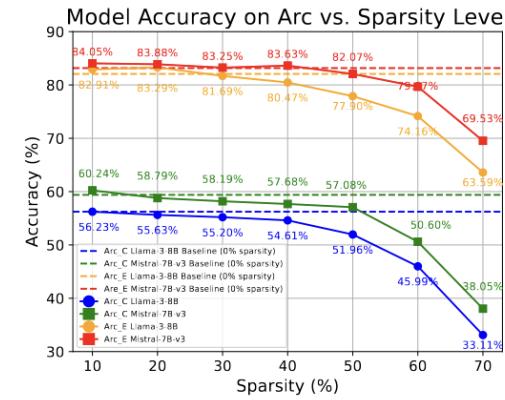
(c) OBQA



(d) PIQA

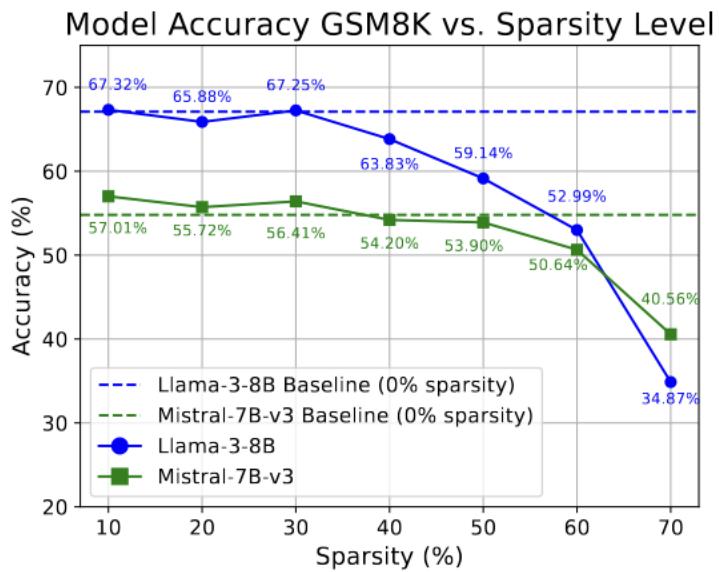


(e) WinoGrande

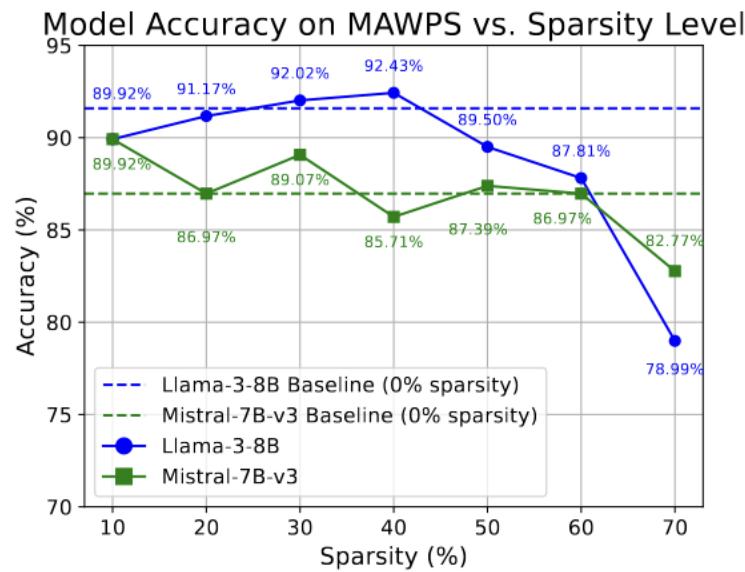


(f) ARC-Easy and ARC-Challenge

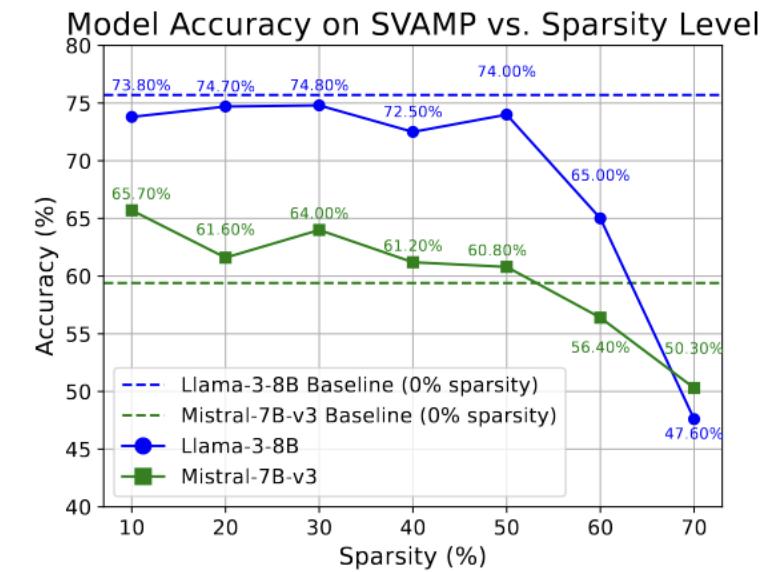
Performance – Accuracy (3)



(a) GSM8K Accuracy

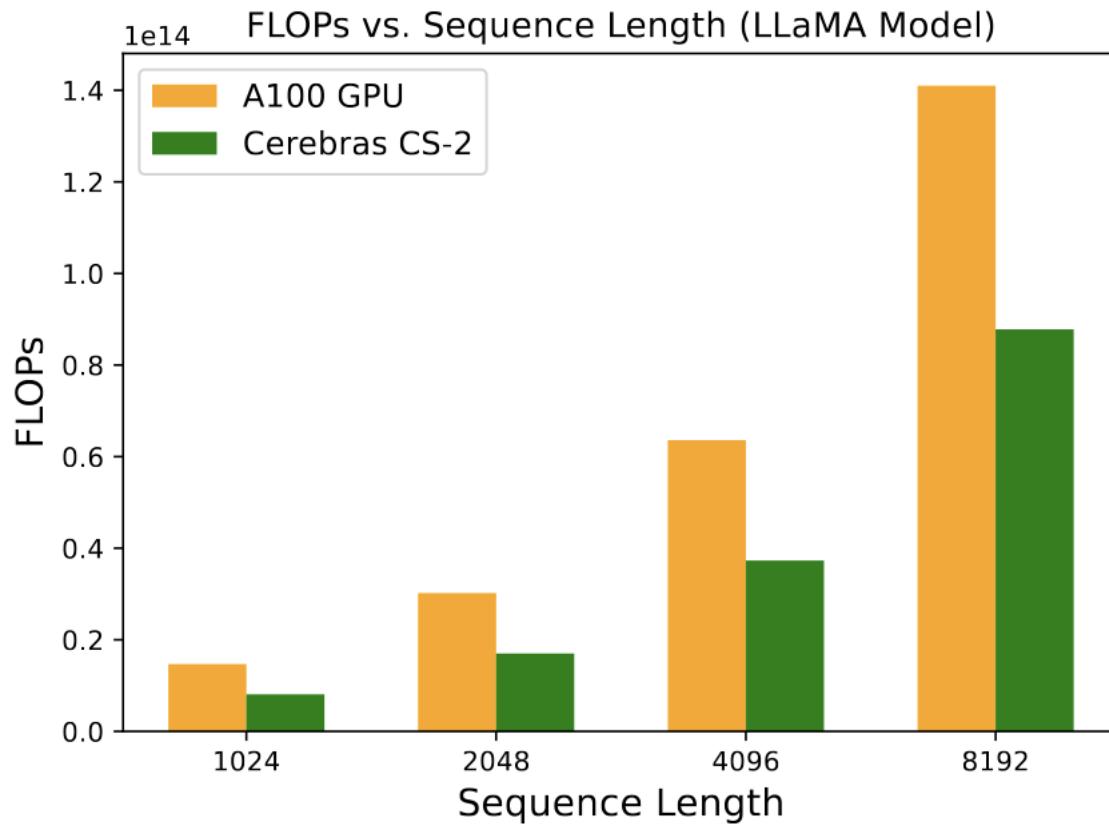


(b) MAWPS Accuracy

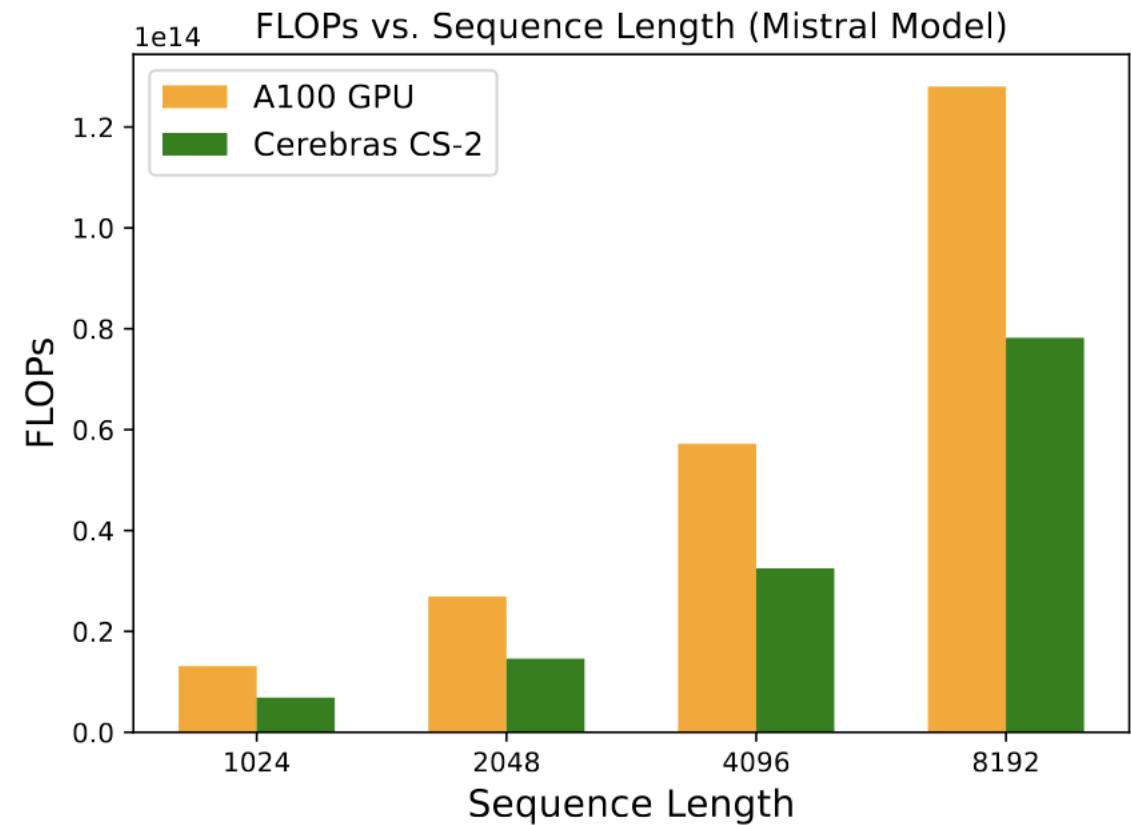


(c) SVAMP Accuracy

Performance – FLOPs Reduction

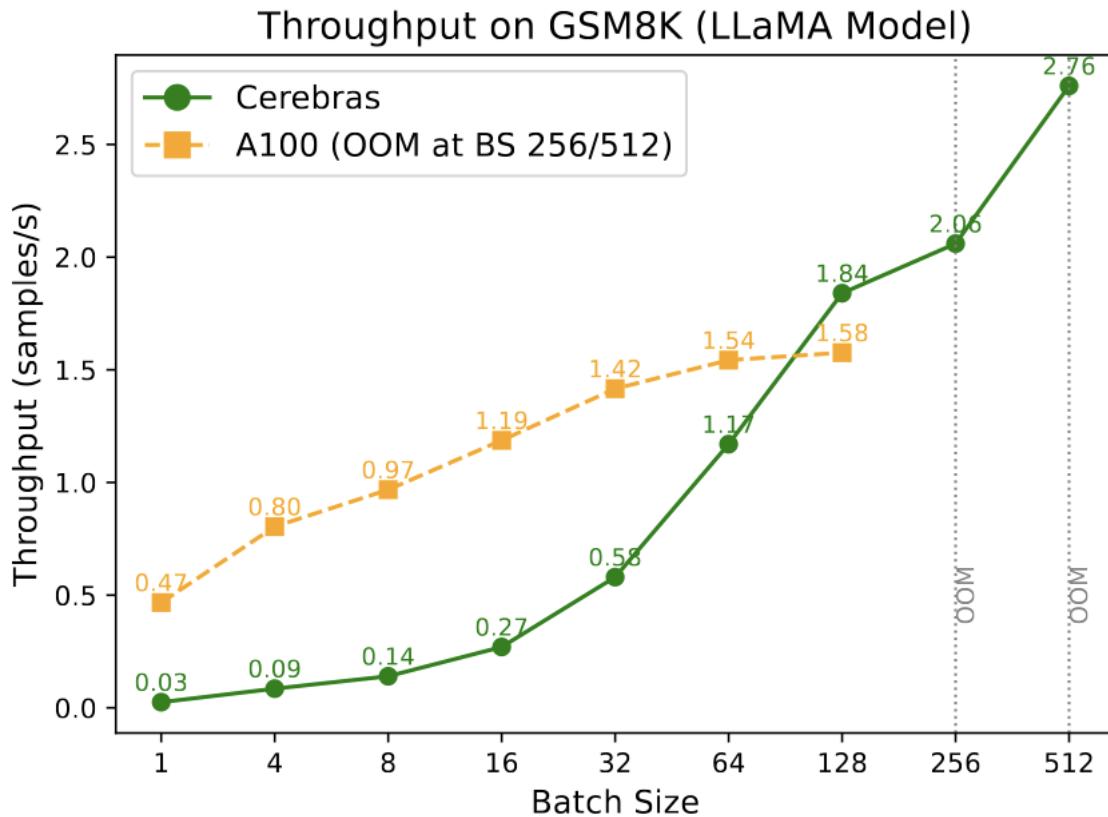


(a) Inference FLOPs reduction of Llama Model

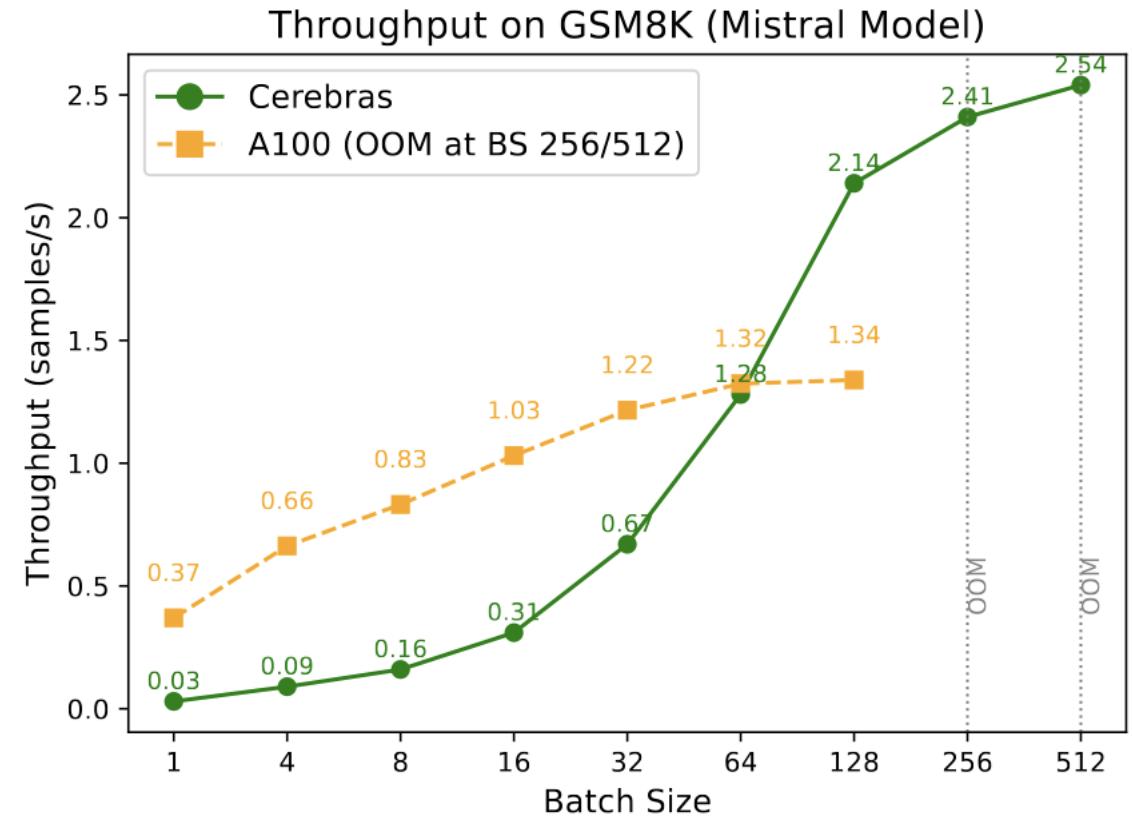


(b) Inference FLOPs reduction of Mistral Model

Performance – Speedup



(a) Throughput Comparison of Llama Model



(b) Throughput Comparison of Mistral Model

Thank you, and Question?

Wenqian “Wendy” Dong <wenqian.dong@oregonstate.edu>