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A Wafer Scale Engine (WSE) is a type of computer
chip designed to accelerate artificial intelligence and
high-performance computing workloads.
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The Cerebras core physical design: 50% of Each core includes local SRAM, compute unit, and a fabric router for direct
the area is static random-access memory inter-core communication within a 2D mesh network

(SRAM) and 50% of the area is logic.
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Gerebras Architecture is Designed '

e Fine-grained dataflow cores
e Triggers compute only for non-zero data

Data a Ctrl

Fabric Input Dataﬂow Trigger

e High bandwidth memory rﬂ S
e Enables full datapath performance =

e High bandwidth interconnect i e ‘ -
e Enables low overhead reductions i lusosre

16 GPRs

Only architecture capable of accelerating all
types of sparsity, including dynamic and
unstructured sparsity.
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e Only retrain few parameters for Down-stream Adaptation
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Image credit: https://oneminutenlp.substack.com/p/low-rank-adaptation
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Low-Rank Adaptation (LoRA)

e Only retrain few parameters for Down-stream Adaptation
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An end-to-end framework that explore the benefit of unstructured sparsity on
Cerebras for LLMs’ finetuning and inference

(1) Sparse Inference Efficiency:

« Enable true FLOPs reduction at inference time using unstructured sparsity.
(2) Cerebras Hardware Utilization:

« Leverage Cerebras CS-2’'s unique support for unstructured sparse computation.
(3) End-to-End Sparse Tuning Pipeline:

« Support sparsity from pruning to deployment with no conversion steps.

(1) LoRA Merge Breaks Sparsity:
Standard LoRA adapters (dense matrices) overwrite zeroed weights when merged.
(2) Dense Fine-Tuning after Sparse Pretraining:

Methods like SPDF reintroduce density during downstream adaptation.
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Step 1: Adaptive Sparsity Initialization Step 2: Sparse-aware Fine tuning
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Step3: Sparsity-Preserved Merge ! - =

Three steps in Phoenix: (1) Adaptive Sparsity Initialization, where task-specific sparse weights are generated
from a pre-trained dense model; (2) Sparsity-Aware Fine-Tuning, Phoenix applies a binary mask to get the
sparse structure derived from the sparsified pre-trained model weights and uses a search algorithm to select
the high performance subadapter configuration; and (3) Sparsity-Preserved Merge, where the fine-tuned
adapter is integrated back into the sparse model without breaking the original sparsity pattern.
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LLaMA-3-8B and Mistral-7B-v0.3

(1) Grade School Math: We benchmark performance on the GSM8K dataset, a challenging arithmetic reasoning task requiring
multi-step problem solving

(2) Instruction-Tuned Math Reasoning: This includes a trio of math-focused datasets — GSM8K, Math Word Problems
(MAWPS), and SVAMP

Specification Cerebras CS-2 Nvidia A100 80GB
Chip Size 46225 mm? 826 mm?
Memory 40GB on-chip SRAM  80GB off-chip HBM
Memory Bandwidth 22 PB/s 2 TB/s
Compute Capacity 850000 cores 6912 CUDA cores

Process 7nm (TSMC) 7nm (TSMC)
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(f) ARC-Easy and ARC-Challenge
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1e14 FLOPs vs. Sequence Length (LLaMA Model)
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(a) Inference FLOPs reduction of Llama Model
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1e14 FLOPs vs. Sequence Length (Mistral Model)
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(b) Inference FLOPs reduction of Mistral Model



2.76

Throughput on GSM8K (LLaMA Model)
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Thank you, and Question?

Wengian “Wendy” Dong <wengian.dong@oregonstate.edu>
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